Classifying thick subcategories of perfect complexes
نویسندگان
چکیده
Given a commutative coherent ring R, a bijective correspondence between the thick subcategories of perfect complexes Dper(R) and the Serre subcategories of finitely presented modules is established. To construct this correspondence, properties of the Ziegler and Zariski topologies on the set of (iso-classes for) indecomposable injective modules are essentially used.
منابع مشابه
Classifying Serre subcategories of finitely presented modules
Given a commutative coherent ring R, a bijective correspondence between the thick subcategories of perfect complexes Dper(R) and the Serre subcategories of finitely presented modules is established. To construct this correspondence, properties of the Ziegler and Zariski topologies on the set of isomorphism classes of indecomposable injective modules are used in an essential way.
متن کاملClassifying Subcategories of Modules over a Commutative Noetherian Ring
Abstract. Let R be a quotient ring of a commutative coherent regular ring by a finitely generated ideal. Hovey gave a bijection between the set of coherent subcategories of the category of finitely presented R-modules and the set of thick subcategories of the derived category of perfect R-complexes. Using this isomorphism, he proved that every coherent subcategory of finitely presented R-module...
متن کاملClassifying Thick Subcategories of the Stable Category of Cohen-macaulay Modules
Various classification theorems of thick subcategories of a triangulated category have been obtained in many areas of mathematics. In this paper, as a higher dimensional version of the classification theorem of thick subcategories of the stable category of finitely generated representations of a finite p-group due to Benson, Carlson and Rickard, we consider classifying thick subcategories of th...
متن کاملThick subcategories of perfect complexes over a commutative ring
0→ Ps → · · · → Pi → 0 where each Pi is a finitely generated projective R-module. Let P the full subcategory of D consisting of complexes isomorphic to perfect complexes. These are precisely the compact objects, also called small objects, in D. These notes are an abstract of two lectures I gave at the workshop. The main goal of the lectures was to present various proofs of a theorem of Hopkins ...
متن کاملRefining Thick Subcategory Theorems
We use a K-theory recipe of Thomason to obtain classi cations of triangulated subcategories via re ning some standard thick subcategory theorems. We apply this recipe to the full subcategories of nite objects in the derived categories of rings and the stable homotopy category of spectra. This gives, in the derived categories, a complete classi cation of the triangulated subcategories of perfect...
متن کامل